Arthur Conmy

Intepretability 

Views my own

Wiki Contributions

Comments

Ah yeah, Neel's comment makes no claims about feature death beyond Pythia 2.8B residual streams. I trained 524K width Pythia-2.8B MLP SAEs with <5% feature death (not in paper), and Anthropic's work gets to >1M live features (with no claims about interpretability) which together would make me surprised if 131K was near the max of possible numbers of live features even in small models.

I don't think zero ablation is that great a baseline. We're mostly using it for continuity's sake with Anthropic's prior work (and also it's a bit easier to explain than a mean ablation baseline which requires specifying where the mean is calculated from). In the updated paper https://arxiv.org/pdf/2404.16014v2 (up in a few hours) we show all the CE loss numbers for anyone to scale how they wish.

I don't think compute efficiency hit[1] is ideal. It's really expensive to compute, since you can't just calculate it from an SAE alone as you need to know facts about smaller LLMs. It also doesn't transfer as well between sites (splicing in an attention layer SAE doesn't impact loss much, splicing in an MLP SAE impacts loss more, and residual stream SAEs impact loss the most). Overall I expect it's a useful expensive alternative to loss recovered, not a replacement.

EDIT: on consideration of Leo's reply, I think my point about transfer is wrong; a metric like "compute efficiency recovered" could always be created by rescaling the compute efficiency number.

  1. ^

    What I understand "compute efficiency hit" to mean is: for a given (SAE, ) pair, how much less compute you'd need (as a multiplier) to train a different LM,  such that  gets the same loss as -with-the-SAE-spliced-in.

I'm not sure what you mean by "the reinitialization approach" but feature death doesn't seem to be a major issue at the moment. At all sites besides L27, our Gemma-7B SAEs didn't have much feature death at all (stats at https://arxiv.org/pdf/2404.16014v2 up in a few hours), and also the Anthropic update suggests even in small models the problem can be addressed.

Arthur Conmy2dΩ142125

The "This should be cited" part of Dan H's comment was edited in after the author's reply. I think this is in bad faith since it masks an accusation of duplicate work as a request for work to be cited.

On the other hand the post's authors did not act in bad faith since they were responding to an accusation of duplicate work (they were not responding to a request to improve the work).

(The authors made me aware of this fact)

Awesome work! I notice I am surprised that this just worked given just 1M datapoints (we use 1000x this with LMs, even small ones), and not needing any new techniques, and producing subjectively extremely abstract features (IMO). 

It would be nice if the "guess the image" game was presented as a result rather than a fun side thing in this post. AFAICT that's the only interpretability result that can't be critiqued as cherry-picked. You should state front and center that the top features for arbitrary images are basically interpretable, it's a great result!

Thanks for the feedback, we will put up an update to the paper with all these numbers in tables, tomorrow night. For now I have sent you them (and can send anyone else them who wants them in the next 24H)

+1 to Neel. We just fixed a release bug and now pip install transformer-lens should install 1.16.0 (worked in a colab for me)

Arthur Conmy4dΩ16318

I think this discussion is sad, since it seems both sides assume bad faith from the other side. On one hand, I think Dan H and Andy Zou have improved the post by suggesting writing about related work, and signal-boosting the bypassing refusal result, so should be acknowledged in the post (IMO) rather than downvoted for some reason. I think that credit assignment was originally done poorly here (see e.g. "Citing others" from this Chris Olah blog post), but the authors resolved this when pushed.

But on the other hand, "Section 6.2 of the RepE paper shows exactly this" and accusations of plagiarism seem wrong @Dan H. Changing experimental setups and scaling them to larger models is valuable original work.

(Disclosure: I know all authors of the post, but wasn't involved in this project)

(ETA: I added the word "bypassing". Typo.)

We use learning rate 0.0003 for all Gated SAE experiments, and also the GELU-1L baseline experiment. We swept for optimal baseline learning rates on GELU-1L for the baseline SAE to generate this value. 

For the Pythia-2.8B and Gemma-7B baseline SAE experiments, we divided the L2 loss by , motivated by wanting better hyperparameter transfer, and so changed learning rate to 0.001 or 0.00075 for all the runs (currently in Figure 1, only attention output pre-linear uses 0.00075. In the rerelease we'll state all the values used). We didn't see noticable difference in the Pareto frontier changing between 0.001 and 0.00075 so did not sweep the baseline hyperparameter further than this.

Oh oops, thanks so much. We'll update the paper accordingly. Nit: it's actually 



(it's just minimizing a quadratic)

ETA: the reason we have complicated equations is that we didn't compute  during training (this quantity is kinda weird). However, you can compute  from quantities that are usually tracked in SAE training. Specifically,  and all terms here are clearly helpful to track in SAE training.

Load More